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ON THE NON-EXISTENCE OF THE ADDITIONAL INTEGRAL IN THE PROBLEM OF THE NOTION 
OF A HEAVY RIGID ELLIPSOID ALONG A SMOOTH PLANE* 

A.A. IXJROV and A.V. XARAPETYAN 

Two cases are known, in which the system of equations of motion of a 
heavy rigid body along a smooth plane is Liouville integrable (see e.g. 
/l/); in one the body is a sphere whose centre of mass coincides with its 
geometrical centre and the moments of inertia are arbitrary, and in the 
other the body is a solid of revolution. In the present paper the 
necessary conditions for an additional first integral to exist, analytic 
with respect to the plane variables, is obtained for ellipsoidal bodies 
resembling a sphere whose principal moments of inertia are different and 
whose centre of mass coincides with the geometrical centre. 

1. Consider the problem of the motion of a heavy rigid body along a fixed, perfectly 
smooth horizontal plane. We shall specify the position of the body by means of the coordinates 
x, yof its centre of mass G in a fixed 02~~ coordinate system (the Ozy plane coincides with 
the supporting plane and the 0: axis is directed vertically upwards), and the Euler angles 

a.*.@. which determine the orientation of the principal central axes of inertia of the body 

%. 6. GE3 relative to the axes of the fixed coordinate system. 
The body on a smooth plane represents a conservative holonomic system, and its motion is 

determined from the Lagrange equations with the Lagrangian /2/ 

Here I,, In, Is are the principal central moments of inertia of the body, m is its mass, g 
is the acceleration due to gravity, and &.E2.E3 are the coordinates of the point of contact 
between the body and the plane in the principal central axes of inertia, representing the 
functions of the variables 9 and cp. determined from the equations of the body surface. 

Changing from the generalized coordinates and velocities to the coordinates and moments, 
we can write the equations of motion of the body on a smooth plane in canonical form, with the 
Hamiltonian function 

H=&p, A-'p> f&(pIz+ pys) - me (r, sin e+ kc0se) 

where P=(pc.pa.pB),A is the matrix of the quadratic form in c‘,q'.B‘, appearing within the 
curly brackets in the expression for the function L. 

Since the function H is independent of z.Y_$. it follows that the system in question has, 
in addition to the energy integral H== con~t, another three integrals 

PI = P,. .Dv = P,.P* = Pv 

and we can assume withcut loss of generality that the constants P, and P, are zero, i.e. the 
projection of the centre of mass of the body on the supporting surface is immobile (the con- 
stant P* is arbitrary). 

In the general case, the full integrability of the equations of motion of the body on a 
smooth plane requires, as in the case Of the motion of a heavy rigid body with a fixed point, 
one additional integral. We note that unlike the latter case, the form of the body surface 
plays a significant role in the problem in question. 

2. Let the body be bounded by an ellipsoidal surface. Then the coordinates of the point 
of contact between the body and the plane can be written in the form (from now on we shall 
assume that the summation over the repeated indices is carried out from 1 to 3) 

Ek = -cl& - p-'pi*riCik (k = f, 2. 3) p' = &*Ti*, ri = CtjYj 
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Here pi denote the semi-axes of the ellipsoid forming the surface of the body, 
Cij are 

the cosines of the angles between its principal axes and the principal axes of inertia of the 

body, GEj.--el and y, are the corresponding coordinates of the geometrical centre of the ellipsoid 

in the principal central axes of inertia of the body and of the projection of the unit vectcr 

of the vertial on these axes 

yz = sin Bsin 'f. y* = sin ecos e, ys = ees 8 

The potential energy of the body will now take the form 
L? =: mg jejl>j I (piPriZj’.‘l) 

Let us assume that the ellipsoidal body in question is nearly sperhical, with the centre 

of mass of this sphere coinciding withitsqeometrical centre, and that I,<I,<I,. Then 

ak = E’+. Pk = T + EQ i2.1) 

When E= 0 the problem is integrable (see the first case of integrability). Let us expand 
the Hamiltonian function in powers of the parameter E 

Here H0 is identicai, apart from an additive constant, with the kinetic energy of mot;on 
of a rigid body about a fixed point. 

3. If all r,= 0, and ~1~21 %t+psl# 0 (the body degenerates into a sphere whose centre 
of mass does not coincide with its geometrical centre), then ff, has a form analogous tc that 
of H, in the caseofperturbaticn of the classical Euler-Poinsot equation and, according to 

/3/, when ~-0 are small, the equations of motion of the body in qrlestion have no additionai 
first integral analytic with respect to the phase variables. 

4. Suppose 11~s that a:; oj = 0, t,sf ,,*A ~~2-0 (the body is an ellipsoid whose centre of 
mass coincides with its geone:rica: centre). Then H, wili be a quadratic form in vJ and the 
problem will reduce to t:hat cf the existence of a complementary integral in the problem Gf the 
moticr. of a riqiZ body abczt a fixed point in a field with a quadratic potential. 

If the moments cf inertia ofthebodyare alldifferent, then,according tc /4,' the necessaq 
conditions for tne complementary integra: to exist are the same in this case as the Klebsch 
conditions. Fcr the Froblerr in quesacr. these conditicns take the form 

= 0. TIc;1c,3 = 0, TZCISCI, = 0 i;.: 
rlrilCW 
I,r, (r,:? - r;,*; + I$, (c)a* - c,,*j - I& it,,* - I$! = 0 :G.?, 

Relations l4.1) represent a linear :homcger;ec;s system in TV. rz,r3. It can be shown t:riar 
the determinant of the matrix 

t := i'::;j;; ;;;; ;;;; ;: 
i 1 

1; c,si,, 1, 
car?1 Q3C31 / 

is zero, and conseq,uently system :LVL lr2c zon-trivial 5cluticr.s. 
We shil; show that, when cs,~ktlcr. ;;.2' hrlds, rank C = 0. / ..- 
Let ranks=; Z.i.e.the inertia elli>scld a5 5% surface ellipseid hrvf nc‘ commcr: axes. T:he 

general sciutlor, of system i4.l: ha5 the fcrm 

T, = Tp = r3 = p :4. j 3; 

ft follows that tk.e surface el,ipscld is a sphere, which contradicts the assua@ion that 
the inertia and the s,urface ellipscids have nC commGn axes (solution (4.3) transforms the 

eguaticn (4.21 intc an identity . 
Let us ass.aqe that rank C = 1. it can be shown that in this case the matrix of the cosines 

of the angles between the prlnclpa; axes of the inertia ellipsoid and the body surface elirpsoid 

have, apart from the numer;‘ '?g and the choice of the positive directions of the axes, the form 

Cl, = 1, c,* = CiJ = Qi = CQ, = 0 

cpz = cJ3 = cos 6, c,~ = -cpz = -sin 6 (0 < 6 < n'2) 

~~~~ the inertia and the surface ellipsoid have one common axis, and the other two axes 
of the surface ellipscid are rotated by an angle d relative to the corresponding axes of the 

inertia ellipsoid. Such a mass distribution is characteristic of the Celtic Stone. In this 

case the general sclution cf system (4.1! has the form 
II = s. I* = 73 = p 

and condition (3.2) is nou wirltten in the forz 

(I, - I&5 - pf = 0 ( _; 4 : f , 

Since I, i 1,. it follows from (4.3; that S= rr and the surface ellipsoid, as in the 

previoils case, 1s a sphere, wihich contradicts the condition 0 < 6 < n!2. Therefcre rank c = ii. 

Here rheaxes cft:ye ir;ertiae;ligsoidandt'ne surfacee~lipsoidcoincide, conditions (4.1) are satisfied 
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identically, and relation (4.2) takes the form 

J, (r2 - 5) + 1, (TJ - 

me above relation certainly holds in the 

71) + I, (h - r*) = 0 (4.5) 

first, as well as in the second case of in- 
tegrability, though the conditions for a complementary integral to exist in these Cases @I= 
rl= rl or I, = I,,Q= T,) arenotnecessaqforthe relationtohold. We alsonote thatrelation (4.5) 

does not hold for a homogeneous ellipsoidal body. 

5. In the case of an arbitrarily small perturbation in the integrable problem of the 
motion of a sphere whose centre of mass coincides with its geometrical centre, the necessary 
conditions for a complementary first integral to exist, analytic in the phase variables, in 

the class of bodies with ellipsoidal surfaces (ar and rk in (2.1) are such, that a,*-!-q*t 

a3* + 0, II* + rzg - r,' # O), are combinations of the corresponding conditions of Sect.3 and 4. This 
proves the following 

Theorem. The following three conditions are simultaneously necessary for a complementary 
first integral to exist, analytic in the phase variables, in the problem of the motion of a 
heavy rigid ellipsoidal, nearly spherical body, whose centre of mass coincides with its geo- 
metrical centre and the moments of inertia are all different: 1) the centre of mass of the 
ellipsoid coincides with its geometrical centre; 2) the principal axes of the inertia ellipsoid 
and surface ellipsoid coincide; 3) the moments of inertia of the ellipsoid and the semi-axes 
of its surface are connected by the relation 

1, (P? - Ps) + 1, (Ps - PI) $ 1, (P1 - Pr) = 0 

The problem of the existence of a complementary analytic integral in the problem of the 
motion of a body of arbitrary, nearly spherical shape, whose centre of mass coincides with 
its geometrical centre, is more interesting and more complex. In this case, the first approxi- 
mation in terms of a small parameter already yields a potential which may represent, generally 
speaking, an arbitrary function of the direction cosines TV, y2,y8, unlike the function H, (2.2) 
representing the s'um of the linear and quadratic forms of the variables ~~,y~,?~, 
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PERTURBED MOTION OF A KOVALEVSKAYA TOP* 

N.N. MOTORINA 

Perturbation theory based on the appiication of Lie series, is used to 
study a special case of the motion of a rigid body about a fixed point. 
The equations written in action-angle variables are used in Hamiltonian 
form. Thesolutions are obtained in the form of trigonometric series with 
constant coefficients. 

It is assumed that the distribution of mass in the body is clsoe to the distribution in 
the Kovalevskaya case and the centre of gravity of the body is situated fairly near to the 
fixed point. The canonical Deprit variables /l/ are used. The motion of the body can be 
described in these variables by the following set of equations: 

d(L.C,H) dF d (1. I, h) aF 
df 

=- 
dU.c".h) ’ dr=-a(L.b,H) 

Using the condition that the centre of gravity of the body is situated fairly close to 
the fixed point and the principal moments of inertia A and B differ from each other, we can 
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